
Michele Albano

29-Aug-17

• Setup of Raspberry PI

• Arrowhead installing

• Arrowhead programming

• Let us configure a Raspberry Pi

• Problem: no eth0 by default

• Solution:
– fdisk –l name_of_image.img

– Compute offset = start of a partition * sector size

– mount -o loop,offset=xxxxxx
name_of_image.img /mnt/whatever

– Change what you want

– umount /mnt/whatever

• What do I want to change?
– /etc/network/interfaces

• Changes to /etc/network/interfaces:

– auto lo eth0

– iface lo inet loopback

– iface eth0 inet static

– address 192.168.69.10

– netmask 255.255.255.0

– gateway 192.168.69.1

• BUT the last RPI doesn’t have eth0

– For example, mine has enxb827eb444b14

• Go to the first partition of the memory card

– Touch ssh

• For example,
– dd if=name_of_image.img of=/dev/sdf

• Then,

– ssh pi@192.168.17.202

• On the Raspberry:

– sudo raspi-config

– And then switch on ssh permanently

– And maybe enlarge the filesystem to the whole

memory card (menu “advanced”)

mailto:pi@192.168.17.202

• Share the internet connection of your

computer, to be able to reach internet from

the raspberry pi

• Setup of Raspberry PI

• Arrowhead installing

• Arrowhead programming

• Download Arrowhead distribution

– https://drive.google.com/file/d/0B8k8mA0XtZU
dVjl5SVZISXNocmc/view?usp=sharing

– You have actually it on the raspberry pi image
that was provided

• Then, please install

– mysql DB server, used by the core systems

– phpMyAdmin, to manage the DB easily

– postman, to have easy access to core services’
functionalities

29-Aug-17

https://drive.google.com/file/d/0B8k8mA0XtZUdVjl5SVZISXNocmc/view?usp=sharing

• Service Registry: Arrowhead Systems register and revoke the Services they offer. This
entry also includes the http endpoint where the Service is accessible.

• Orchestrator: Arrowhead Systems turn to the Orchestrator with Service requests if
they wish to consume Services. The initiated orchestration process returns with a
single one or a list of Service Providers. After orchestration, the requester System
has to consume the specified Service from the specified Provider(s).

• Authorization System: the Orchestrator queries this Core System for checking
authorization information. This System stores the intra-cloud and inter-cloud access
rights. It is also responsible for issuing authorization token – if enabled.

• Gatekeeper: this Core System handles all the inter-cloud orchestrational tasks
among Arrowhead Local Clouds. They provide two Services for their Orchestrators:
the Global Service Discovery and Inter-Cloud Negotiations services.

• Arrowhead API: this module is a simple REST tool to provide CRUD operations on the
core database.

• This framework uses MySQL server through the Java Hibernate ORM
– https://dev.mysql.com/downloads/installer/

– It is recommended to use a database manager GUI (e.g. the built-in MySQL
Workbench)

– Username and password is arbitrary

– Remote access for the account is needed, if the Core Systems will run on different
machines

• Please import the create_arrowhead_database_1.sql script
– This will create the database schema „arrowhead” with all the tables and inserts

dummy entries for the examples showed later in this guide

• Please create a “logs” table in the database
– mysql –u root –p

– database create logs;

• Please import the create_logs_table.sql script
– This will create a „log” table by default; and will be used by the Core Systems for

joint logging

– Multiple instances of this table can be created if separate logging is expected for
each Core System (configurable in each Core System separately)

https://dev.mysql.com/downloads/installer/

If secure connections are required (using SSL), the Core Systems have to
be installed with the appropriately created X.509 certificates stemming
from the master Arrowhead CA. There are two options:

– Using the testcloud certificate sets (testcloud1 and testcloud2)

– Creating an own set of certificates

For the latter scenario, it is necessary to take steps that are not part of
this tutorial, including

– Installing a freeware certificate manager tool such as KeyTool Explorer
• http://www.keystore-explorer.org/ available for all platforms

Using certificates are neither mandatory nor adviced through this guide.
All Core Systems can be started using unsecured http (advised).

http://www.keystore-explorer.org/

• Every module is a runnable Java-jar file and has two properties file:

– The „config/app.properties” includes general configuration

– The „config/log4j.properties” configures the logging.

The app.properties file: The log4j.properties:

• The joint core database contains the following

tables:
These tables contain the common

descriptors. They are referenced by

other tables.

These tables store the authorization access

rights.
This table stores the orchestration rules per Application

Systems.

These tables contain run-time

configuration for the Core Systems. Need

setting up.

This table is used by the ORM engine, not to be changed.

• These tables can be modified by using the API module., or directly, for
example via phpmyadmin.

• The “CoreSystem” table stores where each core system can be reached.
This is used by Core Systems for locating other Core Systems.

• For example, let us consider a configuration with the Authorization system
started as https://example.org:8080/authorization/ :
– The system_name field is fixed, and should not to be changed.

– The service_uri contains the full URL path (after the port number)

– The is_secure boolean is indicating that the Authorization System is started in
secure mode, with SSL communication

– There are hardcoded URL subpaths in the java modules, e.g. „/authorization”, in
accordance with the settings in the app.properties file:
• base_uri_secured=https://0.0.0.0:8080/endpoint

• The ”neighborhood” table references trusted Arrowhead Local Clouds, and the “OwnCloud” table

holds information about the Local Cloud itself. These data are used by the Gatekeeper in the inter-

Cloud orchestration process.

https://example.org:8080/endpoint/

• Each module can be deployed by running the appropriate JAR file.

• Every module has its own „config” and „lib” folders.

• Insecure (plain HTTP) deployment on the console:

• java –jar modulename.jar

• Secure (SSL) deployment:

• java –jar modulename.jar secure

• Running both (insec and sec) version of the module at the same
time:

– java –jar modulename.jar both

• This is valid for all modules.

– However, the Service Registry requires further configuration.

• The Service Registry’s functionalities are based on the access to a properly configured
DNS-SD BIND server.

• Configuration of a DNS server is not in scope of this guide.

• If deploying a local DNS server is not possible (e.g.: too time consuming), then the
publicly available BME testclouds’ Service Registries can be used temporarily.
– The „core_system” table has to be set accordingly:

• arrowhead.tmit.bme.hu:8444/serviceregistry
(unsecure, server TSIG: „RM/jKKEPYB83peT0DQnYGg==”)

• arrowhead2.tmit.bme.hu:8444/serviceregistry
(unsecure, server TSIG: „RM/jKKEPYB83peT0DQnYGg==”)

• The communications with the DNS server is configurable in the „dns.properties”
within the SR module, for example:

• The Service Registry bridge is also capable of cleaning up the

DNS server periodically, if enabled in the „app.properties” file.

For now, please disable it.

• To use the examples provided in this guide, dummy Service

Providers have to be registered in the SR as well.

– For example, by direct REST interaction using Postman:

HTTP/POST:
…/serviceregistry/energy/ChargingReservatio

ns/JSON

{

"provider":

{

"systemGroup":"evopro_systems",

"systemName":"server4",

"address":"address4",

"port":"1",

"authenticationInfo":"info4"

},

"serviceURI":"/charging_reserv",

"serviceMetadata":

[

{"key":"color","value":"green"}

],

"tSIG_key":"RM/jKKEPYB83peT0DQnYGg==",

"version":"1.0"

}

HTTP/POST:
…/serviceregistry/energy/ChargingReservatio

ns/JSON

{

"provider":

{

"systemGroup":"evopro_systems",

"systemName":"server2",

"address":"address2",

"port":"1",

"authenticationInfo":"info2"

},

"serviceURI":"/charging_reserv",

"serviceMetadata":

[

{"key":"color","value":"white"}

],

"tSIG_key":"RM/jKKEPYB83peT0DQnYGg==",

"version":"1.0"

}

HTTP/POST:
…/serviceregistry/energy/ChargingReservation

s/JSON

{

"provider":

{

"systemGroup":"evopro_systems",

"systemName":"server1",

"address":"address1",

"port":"1",

"authenticationInfo":"info1"

},

"serviceURI":"/charging_reserv",

"serviceMetadata":

[

{"key":"color","value":"black"}

],

"tSIG_key":"RM/jKKEPYB83peT0DQnYGg==",

"version":"1.0"

}

HTTP/POST:
…/serviceregistry/energy/billing/JSON

{

"provider":

{

"systemGroup":"evopro_systems",

"systemName":"server1",

"address":"address1",

"port":"1",

"authenticationInfo":"info1"

},

"serviceURI":"/billing",

"serviceMetadata":

[

{"key":"color","value":"black"}

],

"tSIG_key":"RM/jKKEPYB83peT0DQnYGg=

=",

"version":"1.0"

}

• To test out inter-Cloud orchestration, the secondary Cloud can be set up similarly.

– Please import the „create_arrowhead_db_2.sql” script

– Modify the „address” field in the „own_cloud” table for both databases.

– Also modify the „address” field in the „neighborhood” table in Cloud 1 so the Gatekeeper can

contact Cloud 2

– Post the following entries in Cloud 2’s Service Registry (The BME testclouds have these.)

HTTP/POST:
…/serviceregistry/energy/ChargingReservations/JSON

{

"provider":

{

"systemGroup":"AUDI_systems",

"systemName":"server1",

"address":"address1",

"port":"1",

"authenticationInfo":"info1"

},

"serviceURI":"/charging_reserve",

"serviceMetadata":

[

{"key":"color","value":"green"}

],

"tSIG_key":"RM/jKKEPYB83peT0DQnYGg==",

"version":"1.0"

}

HTTP/POST:
…/serviceregistry/energy/chargingType/JSON

{

"provider":

{

"systemGroup":"AUDI_systems",

"systemName":"server1",

"address":"address1",

"port":"1",

"authenticationInfo":"info1"

},

"serviceURI":"/charge_type",

"serviceMetadata":

[

{"key":"color","value":"green"}

],

"tSIG_key":"RM/jKKEPYB83peT0DQnYGg==",

"version":"1.0"

}

• We provided one scenario to experiment with the
Advanced Orchestration Service of Arrowhead.

• These are consistent with the dummy data imported in
the databases by executing the
create_arrowhead_database_1 & 2 scripts .

• These scenarios include sending Service Requests to the
Orchestrator and receiving Orchestration Response
based on the dummy data.

• Recommendation: test these configuration manually,
interacting through plain HTTP.
– Example: using the Postman development test tool (Google

Chrome extension)

– https://www.getpostman.com/

https://www.getpostman.com/

• The test scenario regards an automotive case. There are two Local Clouds defined:
– Cloud 1 belongs to a charging infrastructure owner with charging stations and their

management systems (servers). Here, evopro Inc. owns this deployment.

– Cloud 2 belongs to a car manufacturer and it includes electric cars that can look for charging
services. Here, AUDI is brought as an example. This Cloud also has a charging reservation
server operating.

• There are multiple Application Services defined for testing out orchestration. Some
Service Providers are missing qualifications (e.g. missing authorization or simply
are offline).
– ChargingReservation can be requested by „charging_stations” and server[s] are capable of

serving it (either in Cloud 1 or 2).

– The ChargingType service can requested by cars (from AUDI’s cloud) and charging_stations
(from evopro’s) are capable of serving it. It would define what type of charging the given station
is capable of.

– The „billing” service can be requested by charging_stations and evopro’s Management Servers
are capable of serving it.

– Systems in AUDI’s cloud can request DC_charging service and evopro’s charging_stations are
capable of providing it.

• These are shown on the next slide.

Orchestration
System

Authorisation
System

Service
Registry

Management

servers [1-4]Charger

Station 1

Gatekeeper

System

Orchestration
System

Authorisation
System

Service
Registry

Gatekeeper

System

evopro_cloud
(address: TBD)

AUDI_cloud
(address: TBD)

Service Registry B
(arrowhead2.tmit.bme.hu)

Service Registry A
(arrowhead.tmit.bme.hu)

Service 1

ServiceGroup: energy
ServiceDefinition: billing
Interfaces: JSON
Service Metadata: color:black

Service 2

ServiceGroup: energy
ServiceDefinition: chargingType
Interfaces: JSON
Service Metadata: color:green

Service 4

ServiceGroup: energy
ServiceDefinition: ChargingReservations
Interfaces: JSON
Service Metadata: color:green/black/white

ArrowheadSystem 1 (Cloud Evopro)

SystemGroup: evopro_car_chargers
SystemName: charging_station1
Address: 0.0.0.0
Port: 8080
AuthenticationInfo: evocert1

ArrowheadSystem 2-5 (Cloud Evopro)

SystemGroup: evopro_systems
SystemName: server1-4
Address: address1-4
Port: 1
AuthenticationInfo: evocert2-5

ArrowheadSystem 6 (Cloud AUDI)

SystemGroup: AUDI_systems
SystemName: server1
Address: address1
Port: 1
AuthenticationInfo: audicert1

Evopro Cloud

Operator: evopro
CloudName: evopro_cloud
Gatekeeper IP, Port, URI:
... :8446/gatekeeper
AuthenticationInfo: NotUsed

AUDI Cloud

Operator: AUDI
CloudName: AUDI_cloud
Gatekeeper IP, Port, URI:
... :8446/gatekeeper
AuthenticationInfo: NotUsed

Service 3

ServiceGroup: charging
ServiceDefinition: DCcharging
Interfaces: JSON
Service Metadata: voltage:20kV

Management

Server

• Cloud1: arrowhead.tmit.bme.hu

• Cloud2: arrowhead2.tmit.bme.hu

• Charging_stations from evopro’s Cloud (#1) are hardwired to use a certain list of
Management Servers.

• However, which station can access which server is dynamic (e.g. changes with time of
day)
– Some servers go offline or night-time management of stations belongs to an external party

• These orchestration rules are stored and iterated through based on their priority.
Check Advanced Orchestration Service SD

Orchestration
System

Authorisation
System

Service
Registry

Service

Provider

Service

Consumer

Gatekeeper

System

Service

Provider

Currently offline
 (not registered in SR)

2

1

Not authorized
 for Consumer

Orchestration
System

Authorisation
System

Service
Registry

Gatekeeper
System

Service

Provider

Service

Provider

Service

Provider

3

4

5

Service Request Form
{

"requesterSystem":

{

"systemGroup": "evopro_car_chargers",

"systemName": "charging_station1",

"address": "0.0.0.0",

"port": "8080",

"authenticationInfo": "info1"

},

"requestedService":

{

"serviceGroup": "energy",

"serviceDefinition": "ChargingReservations",

"interfaces": ["JSON"]

}

}

Orchestration Response (expected)
{

"response": [

{

"instruction": "/charging",

"provider": {

"address": "address2",

"authenticationInfo": "info2",

"port": "1",

"systemGroup": "evopro_systems",

"systemName": "server2"

},

"service": {

"interfaces": [

"JSON"

],

"serviceDefinition": "ChargingReservations",

"serviceGroup": "energy"

}

}

]

}

In this example the Orchestrator will iterate through the 5

store entries in priority order. (All store entries are for this

consumer/service pair.) The 1st entry is not registered in

the Authorization, while the 2nd entry is not registered in

the Service Regsitry. The 3rd entry is the inter-cloud entry

which should be the response if the 2nd cloud is properly

configured. Otherwise the response will contain the 4th

(local) provider.

The flowchart
describes
what
happens /
what you
must do in
the example
on dynamical
orchestration
capabilities.

Service RegistryConsumer Orchestrator Authorization Gatekeeper

HTTP/POST
(ServiceRequestForm)

HTTP/PUT
(ServiceQueryForm)

(ServiceQueryResult)
HTTP/PUT

(IntraCloudAuthRequest)

IntraCloudAuthResponse

Fi
lt

er
in

g
&

M

at
ch

m
ak

in
g

(o
p

ti
on

al
)

Orchestration successful?

HTTP/PUT
(GSDRequestForm)

YES NO
OrchestrationResponse

GSDResult

HTTP/PUT
(ICNRequestForm)

ICNResult

In
te

r-
C

lo
u

d
M

at
ch

m
ak

in
g

GSDPoll

GSDAnswer(s)

ICNProposal

ICNEnd
M

at
ch

m
ak

in
g

(o
pt

io
n

al
)

OrchestrationResponse / ErrorMessage

Service Request Form
{

"requesterSystem":

{

"systemGroup": "evopro_car_chargers",

"systemName": "charging_station1",

"address": "0.0.0.0",

"port": "8080",

"authenticationInfo": "info1"

},

"requestedService":

{

"serviceGroup": "energy",

"serviceDefinition": "ChargingReservations",

"interfaces": ["JSON"]

},

"orchestrationFlags": {

"entry": [

{

"key": "overrideStore",

"value": true

}

]

}

}

Orchestration Response
(expected)
{

"response": [

{

"provider": {

"address": "address2",

"authenticationInfo": "info2",

"port": "1",

"systemGroup": "evopro_systems",

"systemName": "server2"

},

"service": {

"interfaces": [

"JSON"

],

"serviceDefinition": "ChargingReservations",

"serviceGroup": "energy",

"serviceMetadata": [

{

"key": "color",

"value": "white"

}

]

},

"serviceURI": "/charging_reserv"

},

{

"provider": {

"address": "address1",

"authenticationInfo": "info1",

"port": "1",

"systemGroup": "evopro_systems",

"systemName": "server1"

},

"service": {

"interfaces": [

"JSON"

],

"serviceDefinition": "ChargingReservations",

"serviceGroup": "energy",

"serviceMetadata": [

{

"key": "color",

"value": "black"

}

]

},

"serviceURI": "/charging_reserv"

}

]

}

Here we ignore the Orchestration Store, but looking for the same service in the

local cloud. Since we did not give any preferences or asked for matchmaking, we

get back all the providers that are capable to satisfy this service request. These

providers are registered in the Service Registry and also authorized.

Here, charging stations are capable of checking their reservations in all currently

available servers.

Service Request Form
{

"requesterSystem":

{

"systemGroup": "evopro_car_chargers",

"systemName": "charging_station1",

"address": "0.0.0.0",

"port": "8080",

"authenticationInfo": "info1"

},

"requestedService":

{

"serviceGroup": "energy",

"serviceDefinition": "ChargingReservations",

"interfaces": ["JSON"]

},

"orchestrationFlags": {

"entry": [

{

"key": "triggerInterCloud",

"value": true

}

]

}

}

Orchestration Response (expected)
{

"response": [

{

"provider": {

"address": "address1",

"authenticationInfo": "info1",

"port": "1",

"systemGroup": "AUDI_systems",

"systemName": "server1"

},

"service": {

"interfaces": [

"JSON"

],

"serviceDefinition": "ChargingReservations",

"serviceGroup": "energy",

"serviceMetadata": [

{

"key": "color",

"value": "green"

}

]

},

"serviceURI": "/charging_reserv"

}

]

}

Looking for the same service again, but this time we

only ask for non-local provider systems. If the 2nd

cloud is configured, we get back the only registered

provider for this service. This answer could also have

more providers, since we did not ask for

matchmaking.

Service Request Form
{

"requesterSystem":

{

"systemGroup": "evopro_car_chargers",

"systemName": "charging_station1",

"address": "0.0.0.0",

"port": "8080",

"authenticationInfo": "info1"

},

"requestedService":

{

"serviceGroup": "energy",

"serviceDefinition": "chargingType",

"interfaces": ["JSON"]

},

"orchestrationFlags": {

"entry": [

{

"key": "overrideStore",

"value": true

},

{

"key": "enableInterCloud",

"value": true

}

]

}

}

Orchestration Response (expected)
{

"response": [

{

"provider": {

"address": "address1",

"authenticationInfo": "info1",

"port": "1",

"systemGroup": "AUDI_systems",

"systemName": "server1"

},

"service": {

"interfaces": [

"JSON"

],

"serviceDefinition": "chargingType",

"serviceGroup": "energy",

"serviceMetadata": [

{

"key": "color",

"value": "green"

}

]

},

"serviceURI": "/charge_type"

}

]

}

In this final example we ask for a different service, which

can only be found in the 2nd cloud. First the Orchestrator

tries to find a local provider system and when that fails, it

asks the neighborhood clouds too.

Here, charging stations are announcing their charging

capabilities within all mgmt. servers where they can.

• Setup of Raspberry PI

• Arrowhead installing

• Arrowhead programming

• There are three client skeletons available in the distribution:
– Service Provider module (without SSL support): registers in SR,

offers REST resource, unregisters from SR upon exit

– Service Consumer (without Java Jersey library or SSL support):
capable of requesting orchestration and based on that connecting to
a running Service Provider skeleton to retrieve dummy temperature
service information.

– Service Consumer Client with SSL support (based on Jersey-client
library): same capability, but uses SSL to connect to the Orchestrator

• Also available at:
https://github.com/hegeduscs/arrowheadclient

https://github.com/hegeduscs/arrowheadclient
https://github.com/hegeduscs/arrowheadclient

• The three skeletons are maven projects, importable for

example in Eclipse

– The code features hardwired Strings that contain configuration

– They do not need any further configuration

• The service interactions of the skeleton demos are

configured (authorized) in the Core Systems database

scripts.

– Therefore, testable without further configuration.

• Configuring the Core Systems

– For example, by direct interaction with the core

database

• Enabling SSL and use of certificates

